Lecture 17

Example. Irrational rotations are generically ergodic. proof. lat T be an icreatiocal rotation, ie. $T=T_{\alpha}$ for sou e $\alpha / 2 \pi \in \mathbb{Q}$. Suppose towards a contradiction hat \exists Baice meas. E_{T}-invariant sets B, B^{c} sit. mither is meagre. By the 100% leann, 7 noneenpt b open sets U, V sit. U is 100% B and V is $100 \% B^{C}$. sine U and V are t bbl unions of open iatervals/segeath, we way assume WLOG ht $U d V$ we open interacts. Beaune \exists dense orbit (in fact all orbits), we can rotate U enough timers $n \in \mathbb{Z}$, so the $T^{n}(u) \cap V \neq \varnothing$. Sine $T(B)=B$ and T is homomorphism (maps meagre to wage al open to open), it follows $H_{t} T^{n}(h)$ is still 100% B. Thus, He nonempty open net $T^{n}(u) \cap V$ is both 100% B and $100 \% B^{c}$, worteadicting test S^{\prime} is a Baice space.

Def. For a yeaph G on a vertex set X, a (proper) colouring of h is a $\operatorname{map} c: X \rightarrow Y$, for sone $2 A T$, such the
adjacent verticer in G receive different c-values (called wolours). When X is a Polish spaed, a Boel (rosp. Baice weas.) proper colouring of h is a Boul (resp. Baire neas.) map $c: X \rightarrow Y$, for soee Polish iphee Y (e.y. $Y:=\{0,1,2\}$ with discrete netric) tht is a peeper colowing. Unan Y is Abl, His is eqnivalant to each whour being Bonel (resp. Baire wens).

Recall (AC). A gragh h car be coloured vith 2 colours if aul only if G is bipartite \Leftrightarrow doen't have od ugcles.
Proof. \Rightarrow An odd çcle cund be coloned with 2 wlones.
$\angle=(A C)$. We cloose a point x_{c} in each somponent C and colanr vertices is l blue if their distance toom x_{c} is even al ced, otharwise. Beose there ure no odd yjcles, Hoce won't be adjacent rectices whose distance foom x_{c} has the sane parity.

Exanye. G_{T} fer an iecational rolatone T_{α} adaits a Borel
colouring with 3 wlours.
Proof.

Each colare is a finte union of halt-open intecuals.

Cocollary (fron yen. egadicits). Ther is so Baire meas. (in pacti(alcr, no Bonel) coloncimg of the irrational sotation gragh vill 2 colours.
Proof. Ingpose Unt is such a wloncing, i.e. there we Baire meas. sets B, B^{C} sit. $T_{\alpha}(B)=B^{C}$.

Sinue T_{α} is a homonophbish, B is meage \Leftrightarrow \mathbb{R}^{l} is anagee, lunce both are womengic bease S^{\prime} is a Baine space. But both B al B^{C} are T_{α}^{2}-invariant of $T_{\alpha}^{2}=T_{2 d}$, hich is itill an iceationel rotetion, have yen. egoolic, a contactictia.

Other seaples: Harning geaph and G_{0}. We detien a youph $H_{o s}$ on $2^{\mathbb{N}}$, called the Hanning graph, as follows: pat an edge betreen $x, y \in 2^{\mathbb{N}}$ if x al y differ by exactly one bit
(ie. ingle). is Un Hanging graph on 2^{3}.
Prop. Hawking graph is bipartite \Leftrightarrow does's have odd cycles).
Proof. The coadinate-vise birang san over a cycle has to be the all -0 sequence 0^{∞}, Um s, it anat have even number of sumwands. In other words, each flipped lit has to be flipped hack.
 can be coloured with 2 colours.

Obs. The conneteduen equiv. rel. for the Hanning graph How on 2^{N} is eventual equality, which is denoted by \mathbb{E}_{0}, s.e. $x \mathbb{E}_{0} y \Leftrightarrow \forall \infty_{n} x(n)=y(n)$,

Each \mathbb{E}_{0}-days is cool, Mas thee are continanne any \mathbb{E}_{0}-dan, ic. H_{∞}-exponents.

Theorem. The Hamming graph H_{0} doesu'd have a Baize meas.
colouring with ctbly many dolours.
Pest. Suppose on the contrary OX there is a Baize meas. colouring c: $2^{\mathbb{N}} \rightarrow \mathbb{N}$, in other words eat colour $c^{-1}(n)$ is Baice meas. Sine $2^{\mathbb{N}}=\bigcup_{n \in \mathbb{N}} c^{-1}(n)$, one of these colours $c^{-1}(a)$ has to be conmeage. $D_{y}^{n \in \mathbb{N}}$ the 100% lena, thee e is a vouegly, pen set U that is $100 \frac{9}{\%}$ that colour $B==^{-1}(a)$ (say blue). Sim U is a disjoint union of cylinders, we nay assume Kt U itself is a ylicher, i.c. $U=[w]$ for some trite word $v \in Z^{<\mathbb{N}}$.

But $U=\left[\begin{array}{ll}0 & 0\end{array}\right]\left[\begin{array}{ll}1\end{array}\right]$.
HW The st of neigh hours of a manger set is still menage (Changing one hit is a honedmarphise).
The map $f_{k}: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ which flips the $k^{\text {th }}$ bit, $k=$ len th (w), is a homeonocphism. and it mays $[w 0]$ oats $[W \mid]$.
f_{u} has to man g $B \wedge[w 0]$ auto $B^{c} \cap[W 1]$, which is a coutiactiction rime the former is normengre dive the latter is meagre.

One can define an ayctic yeuph Go, a subgragh of the Hamaing genph H_{∞}, hich has the sane conected nouponents, so ench G_{0}-conponat is a spanning tree of an H_{∞} - conponent. Fix a dense set $\left\{S_{k}: k \in \mathbb{N}\right\} \leq$ $2^{<\mathbb{N}}$ of finite segbeces such hat lungth $\left(s_{k}\right)=k$. (This exists b) a Luwework execcize.)
Go in lefined as follous: x ad y in 2^{n} are adjaceet if $\exists k$ s.t. $y=s_{k}-b^{\wedge} z$ al $x=s_{k} \wedge \bar{b} \cap z$, here $b \in\{0,1\}$ al $\bar{b}:=1-b$.

Fact. The \mathcal{G}_{0}-concecteduen relation is still \mathbb{E}_{0}. Proof. HW

Fait 2. G_{0} is aydic.
Proof. HW

Almost the sase proof as fee Hanning graph shacs:
Therem. Go doesn't have a Baice weal. colonsing with athly unang colocrs.

Nite hat if G is a geaph on a Polish space X al \exists Borel yeaph homomorphism $h=2^{\mathbb{N}} \rightarrow X$ from G, ho G, then G also doesuit have a Baine weas. ctbl coloncing (by caperition).

Go-dichotomy (kechcis - Solecki-Todorcevic). Let h be a Borl yeagh on a Polich space X (i.e. the edges of G form a Borel subuct of X^{2}).
Then:
either: I has a Barel itbl colonring orelse: I continnons graph-honoworphish $h: 2^{\mathbb{N}} \rightarrow X$ from G_{0} to G.

